Shin-ichi Morita(Asscociate Prof.)

盛田伸一 准教授

IGPAS and JSPS..., we are accepting international students,

for details:

【to contact】shinichi.morita.c6[AT]tohoku.ac.jp

Ziteng Wang 王 梓騰 (Research student)

Akunna Francess Ujuagu (M1)

Mengmeng He 何 夢夢 (M2)

Daisuke Miyata 宮田 大輔* (D2)

*薬学研究科中林教授と連携して研究しています

Our class at a glance

Here, in this laboratory, we focus on bio-Raman research (research on live cells using Raman microscopes). Also, we are interested in analytical chemistry or science.

Recently it became possible to measure Raman spectra of a single live cell using a standard Raman microscope. Bio-molecules such as proteins, nucleic acids, lipids, etc., that is, atoms combined with electrons, vibrate with different wavenumbers. These oscillators interact with the light, and are detected as Raman scattering. Using Raman signals, we are capable of, for instance, analyzing the distribution of bio-molecules. Also, many killer applications were opened. It is however difficult to distinguish the Raman bands of similar molecules. Raman analysis, therefore, is ambiguous and complicated. Plus, bio-Raman data is extremely large.


【Disentangling of Complicated Large Data】 is of our interest, in this respect. For instance, Raman spectral data of live cells is complicated and large, especially when we observe the time intervals of cellular differentiation (typically several days). It is almost impossible to understand those data in an intuitive manner. Spectral analysis is, therefore, essential to extract and visualize intrinsic information. We have developed mathematically analytical methods compatible to bio-Raman research.

【Use of Raman-Tagged Small Molecules】 is another promising approach of purifying our scientific interest. Let us assume that we introduce large fluorescent chromophores as markers to small molecules such as lipids and some of nucleic acids. Far from giving original properties, target small molecules are perturbed by larger labels. Therefore, dot-like Raman probes such as alkyne-tags are expected to be effective markers even for small molecules. We are interested in developing Raman tags, for instance, utilizing the resonance Raman effect to enhance the brightness of molecular emissions. We are also interested in developing Raman markers sensitive to surrounding environments.

【Development of a Bio-Raman Microscope】, we are trying this mainly in order to monitor the dynamics of cellular differentiation, proliferation, and apoptosis. To do so, living cells have to be incubated on the microscope stage for several days; plus, the positions of moving cells have to be confirmed continuously. Using the bio-Raman microscope, it is possible to define cellular states in a non-destructive and non-labeling manner. Based on the information of cellular conditions, we are expecting to control cellular destinies. Raman monitoring is probably effective for tissue engineering.

For instance,

◾S. Morita, T. Itoh (Review, Invited)

盛田伸一,伊藤民武

"プラズモンとラマン顕微鏡による生体組織・単一生細胞・単一分子の分析化学"

化学工業 2019, 70 (4), 267-272.

◾D. Miyata, T. Nakabayashi, S. Morita (Review, Refereed)

宮田大輔, 中林孝和, 盛田伸一

"バイオ・ラマン研究の現状とこれから"

レーザー研究 2019-02, 47 (2), 85-88.

◾T. Sugawara, T. Nakabayashi, S. Morita

"Generalized Two-dimensional Correlation Analysis for Unimodal Waveforms Modeled by Quadratic Polynomials"

Anal Sci. 2018, 34 (7), 845-847.

◾T. Sugawara, Q. Yang, T. Nakabayashi, S. Morita

"A Proposal for Automated Background Removal of Bio-Raman Data"

Anal Sci. 2017, 33 (12), 1323-1325.

◾S. Takanezawa, S. Morita, Y. Ozaki, Y. Sako
"Raman Spectral Dynamics of Single Cells in the Early Stages of Growth Factor Stimulation"

Biophysical Journal, 2015, 108 (9), 2148-2157.
◾S. Morita, S. Takanezawa, M. Hiroshima, T. Mitsui, Y. Ozaki, Y. Sako
"Raman and Autofluorescence Spectrum Dynamics along the HRG-induced Differentiation Pathway of MCF-7 Cells"
Biophysical Journal, 2014, 107,  2221–2229.

 

本研究室では,バイオ・ラマン研究(生細胞のラマン顕微鏡による研究)を中心に研究しています.他,理学・分析化学的なテーマについても研究しています

 

【スペクトルデータを紐解く】 現在,生細胞の局所のラマンスペクトルを計測できるようになっています(経験的には,532・785nm等の励起光で数十秒露光).タンパク質,核酸,脂質等の分子は,様々な振動数で連成振動しています.これらの振動子は光と相互作用し,ラマン散乱光として検出できる場合があります.これを応用すると生体分子の細胞内分布について「ありのまま」分析できます.しかし,類似構造を持つ分子を区別しにくいという点で,分析が曖昧・複雑となり問題でした.また,バイオ・ラマンデータは多様で大量です.そこで,私たちは複雑で膨大なデータを「解析的に紐解く」方法を作ろうとしています

【小分子ラマンタグを開発する】 バイオ・ラマン研究に,アルキンタグ等「ラマンプローブ」という新しい概念・潮流がでてきました.ご存知のように,蛍光色素で標識すれば分子種を区別できますが,小分子(核酸の一部,脂質等)に対して大きな蛍光標識を導入すると,標的分子は本来の振る舞いを失い問題です.この解決のため,理研の袖岡らはアルキン(R-C≡C-R’)に基づくラマン散乱光で小分子を標識(タグ)し,生細胞研究に応用しました.私たちは,共鳴ラマン効果で信号強度を増強する等の工夫をして,現状よりずっと明るいラマンタグ,あるいは「微視環境に敏感に応答する」ラマンタグを開発します

【バイオ・ラマン顕微鏡を開発する】 生細胞が増殖・アポトーシス・分化する様子をラマン顕微鏡で観察できるようにします.そのためには,顕微鏡ステージで細胞を1週間くらい飼い続け,数十個の細胞をひとつひとつ見失わないように,ラマン計測する必要があります.取得したラマンスペクトルは大量で複雑で直感的にほとんど何も分かりません.そこで計測したラマンデータをその場で細胞の相図(状態図)として視覚化できるようにします.バイオ・ラマン顕微鏡を開発すると,生細胞の内部状態を「壊さず」規定できます.ラマンで細胞の運命を予測・誘導できるようにします(再生医療への展開

〒980-8578 宮城県仙台市青葉区荒巻字青葉6-3

東北大学大学院理学研究科 化学専攻 分析化学研究室(盛田研)

化学系研究棟(H-21)・2階・214号室

TEL&FAX: 022-795-6563   

MAIL: shinichi.morita.c6【AT】tohoku.ac.jp

 

【略歴】

1990年~2002年 高等部から博士課程修了まで,一貫して12年間,関西学院大学にお世話になりました

2002年 博士(理学)の学位取得

2002年~ 日本学術振興会特別研究員(桐蔭横浜大学工学部)

2005年~ リサーチアソシエート(University of Georgia 化学科)

2007年~ 基礎科学特別研究員など(理化学研究所)を経て

2013年12月~ 准教授・現職(東北大学大学院理学研究科)

 【論文】 これまで:~40報,着任後について左を参照してください